

# 9. Food & Agriculture



## **1. INTRODUCTION**

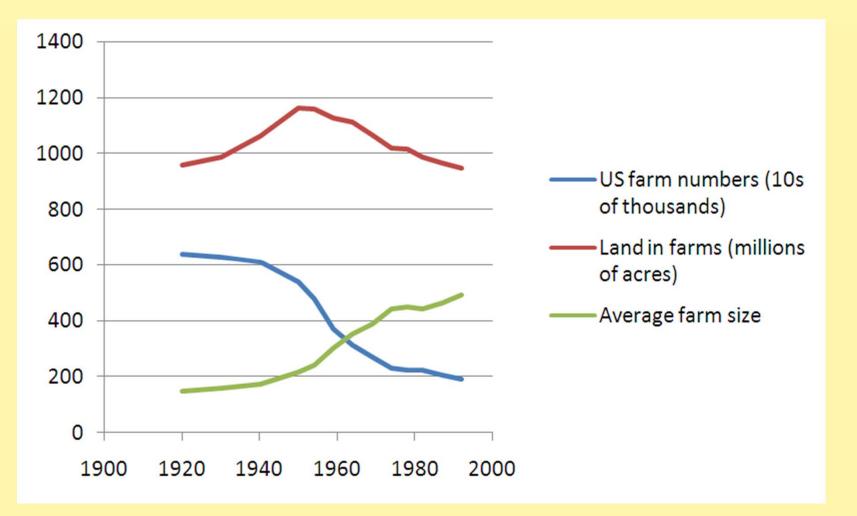


#### The current situation

- Food is now cheap- 40% cheaper than in 1960.
- World per capita food production has risen by around 25% since 1960.
- Pesticides are widely used, but they have may inflict damage on the environment.
- The "industrialization" of agriculture has led to other problems such as topsoil erosion, pollution of rivers and oceans, loss of wildlife.



### US Agriculture: The last hundred years


- Increased mechanization and industrialization => reduced workforce
- Farms are getting bigger, but the total land being farmed remains similar.
- Globalization and increased concentration on specific crops.
- Increasing dependence on off-farm income.



Cargill grain elevator, Mississippi River Picture by Kelly Martin, GFDL, From Wikimedia Commons



#### **Trends in US farming**



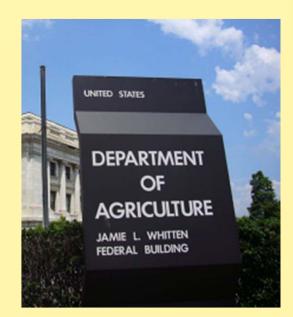
Graphs by Martin Walker. Farm size is in acres. Source: USDA, 1994.



# Are small farms still relevant?

- Small farms find themselves working in an industry increasingly geared towards large producers.
- Small farmers generally lack a reliable source of adequate credit. Many seek income from off-farm employment.
- Yet small farms often play a key role in rural communities.
- Some argue that small farms are much more suitable than large farms for sustainable agriculture.

D'Souza & Gebremedhin, Sustainability in Agricultural and Rural Development, Ashgate Publishing, 1998.




Small farm, <u>from Flickr</u>. Picture by <u>Photofarmer</u>, CC license.



### US Public Policy: Help or hindrance?

- Some such as <u>Schumacher</u> have argued that US farm policy in the late 20<sup>th</sup> century was not sustainable.
- Nevertheless, public policy tended to favor more "industrial" approaches, and to regard sustainable practices as marginal and more costly.
- This approach began to change in the 1990s. The 2002 Farm Bill contained a significant shift in policy, with less emphasis on retiring fragile land, and increasing support for environmental improvements in:
  - How working land is used
  - Wetland restoration



Picture <u>from WM Commons</u>, by Diz28, public domain.



## **2. FOOD PRODUCTION**



### Feeding the world

- Figures vary but undernourishment probably affects 10-20% of the world's population.
- There is enough food produced to feed everyone- but food production is not evenly distributed. Thus food rots in one part of the world, while people starve in another part.
- With rising affluence population growth slows, but there is an increasing demand for meat products, which require much more acreage per pound than do cereal crops.



# Some ways to increase agricultural output

- Extensification: Convert wild land to cropland.
- Intensification: Apply chemical fertilizer to increase yields.
- *Irrigation*: May be used to convert non-arable land to arable land.
- New plant strains (produced either by traditional breeding or by new genetic engineering methods) may enhance the productivity of the land considerably.



#### **The Green Revolution**

- In 1960 dire predictions were made for mass starvation in India and other countries, yet it never happened. How was this done?
- New high yielding plant varieties were developed, and these greatly improved productivity per acre in countries such as India. These varieties were made available even to the poorest farmers.
- Unfortunately many of these varieties require chemical fertilizers and irrigation.



Picking rice in Bangladesh <u>USAid picture from WM Commons</u>



#### **Fisheries**

- A good example of what happens when a demand on an ecosystem exceeds supply! Many fisheries around the world are now overfished- resulting in the collapse of the fishing industry in these locations.
- Fish farming (aquaculture, now 20% of all fish) has helped offset these losses.



# **3. AGRICULTURE AND THE ENVIRONMENT**



#### Land

- 30% of the world's fertile farmland was lost through erosion between 1955 and 1995.
- To maintain food production, new land must be found, causing deforestation.
- Industrial farming methods may cause heavy loss of nutrients, which may require heavy fertilizer use.



Farm near Kitchener, ON, by Stan Shebs Picture <u>from WM Commons</u>, CC license



#### Water

- Roughly 70% of the world's freshwater supply is used for agriculture.
- About 40% of the world's population is in areas that must share water resources. This leads to water shortages, such as the <u>2007 shortage in Atlanta</u>.



Photo by USDA, taken from WM Commons



#### **Pollution**

- Industrializing agriculture often leads to large-scale intensive agriculture, which may put stress on the local environment from:
  - Excess fertilizer use, causing algal blooms in nearby rivers which in turn causes death of other aquatic life through <u>eutrophication</u>.
  - Massive amounts of waste such as pig sewage.



Eutrophication of the Potomac River. Picture: US NOAA



### **4. THE FUTURE?**



### New technology

- Biotechnology: Genetic engineering allows scientists to take a gene from one plant (say beetle-resistance from a potato) and to incorporate that gene in another plant (say, corn)- so called "genetically modified" (GM) crops. Such crops are used in the US but are politically unacceptable in Europe.
- **Hydroponics**: Grow crops without the need for fertile soil or a good climate- simply needs fresh water and chemical nutrients. Capital intensive.



# The future- possible problems

- Increasing population and affluence causes an increasing demand for food, and agricultural land.
- Modern agriculture is causing the loss of fertile topsoil, loss of the fresh water supply (water tables falling) and environmental stress from fertilizers and pesticides
- Will these two factors combine to give a "crunch" later in this century, or will technology provide the answers?