Chemistry 321

6. GOVERNMENT REGULATIONS & WASTE MANAGEMENT

NOTE: THIS PRESENTATION SUPPLEMENTS THE CONTENT GIVEN IN HILL, MAINLY TO PROVIDE AN OVERVIEW OF US WASTE REGULATIONS

6.1. US Government Regulations

- Clean Water Act (CWA)
- Clean Air Act (CAA)

These two serve as "umbrella" legislation for:

- Resource Conservation & Recovery Act (RCRA)
- Superfund
- Toxic Substances Control Act (TSCA)
- Pollution Prevention Act
- Occupational Safety and Health Act (OSHA)

Clean Water Act (CWA)

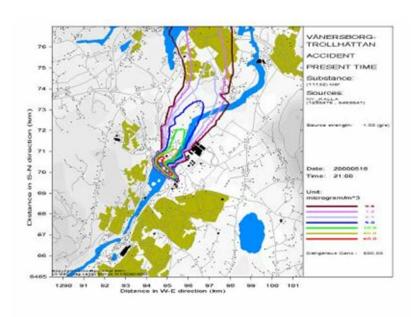
- 1972 Origins (despite veto by Nixon!)
- 1977 Amended, became the CWA.
- EPA to implement pollution control programs (eg for industrial wastewater).
- Banned discharge of pollutants into navigable waters
- Funded construction of sewage treatment plants
- List of specific pollutants that are controlled (129 substances in 1982).

Clean Water Act

- Every industrial facilities that discharge into surface waters must obtain a <u>National Pollutant</u> <u>Discharge Elimination System</u> (NPDES) permit.
- Traditional focus on chemical integrity of water, but now more emphasis on physical and biological aspects.
- If waters do not meet quality standards, then states must develop a "Total Maximum Daily Load" (TMDL)- this is the amount of a pollutant that a waterbody can receive and still meet standards.
- Many effluents may be treated before discharge, to neutralize them or to remove highly toxic pollutants (use <u>BATNEEC principle</u>).

Clean Air Act (CAA)

Various laws since 1955, original form 1970, aiming to achieve by 1975 "National Ambient Air Quality Standards" (NAAQS) to protect public health and the environment.


- 1977- amendments/new goals, since many areas had failed to meet deadlines.
- 1990- amendments to include acid rain, ozone/CFC's, air toxics.

Clean Air Act (CAA)

- Emission permits required, with "emissions trading" allowed.
- Limits set for various classes of <u>hazardous air</u>
 <u>pollutants</u> (HAP's), e.g. "<u>Miscellaneous Organic</u>
 <u>National Emission Standard for Hazardous Air</u>
 <u>Pollutants</u>" (MON).

Clean Air Act (CAA)

 Risk Management Planning (RMP, 1996): to protect communities from accidental release of HAP's. Facilities need to disclose what would happen in the event of a possible accident, and to work towards preventing such an accident.

CWA and **CAA**

• These form legislation that is in effect an "umbrella" for many smaller pieces of environmental legislation, for example on waste management. We will now cover a few of the most important of these.

Resource Conservation & Recovery Act (RCRA): Introduction

- 1976 Introduced, pronounced "rick-rah."
- 1984 Hazardous & Solid Waste Amendments (HSWA). Phased out disposal of hazardous waste in landfills, more stringent rules on hazardous waste management and a program for underground storage tanks.

Resource Conservation & Recovery Act (RCRA)

- Hazardous waste tracked "cradle-to-grave," including generation, transportation, treatment, storage and disposal.
- Also says how best to dispose of non-hazardous waste.
- Only covers waste currently being produced, not historical sites (see Superfund, 11.4.).

Hazardous Waste Identification Rule (HWIR)

- Part of RCRA, deals with 2 separate types of waste, process waste and contaminated media.
 Contains concentration limits for particular constituents, below which waste is no longer hazardous- a departure from traditional practice.
- Problem if materials deemed "waste" are to be recycled.

6.4. Superfund (CERCLA & SARA)

- 1980 Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) introduced, original form of Superfund legislation.
- 1986 SARA introduced, amended to include lessons learnt.
- These acts deal with problems caused by pollution in the past (c.f. RCRA)- they mainly deal with long-term problems, but may also tackle immediate problems if necessary.

Superfund

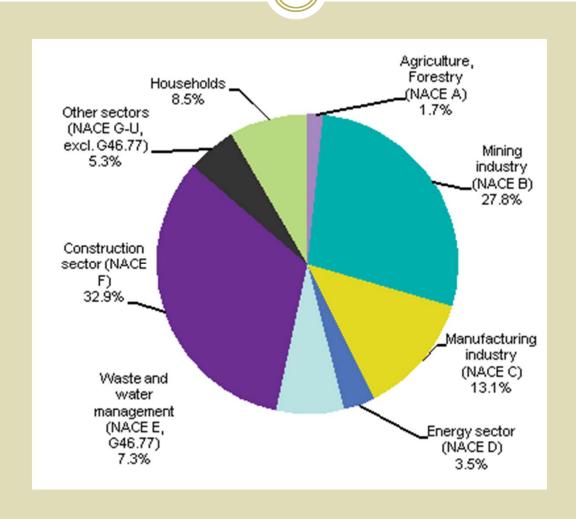
- A trust fund was set up and received funds (ca. \$1.5bn annually) from the petroleum & chemical industries at large until December 1995, when the tax authorization ran out and was not renewed.
- Stresses the need for a permanent solution.
- Sites on the National Priorities List (NPL) are assessed using the Hazard Ranking System (HRS) for their relative risk to human health & the environment.
- Title III of SARA is known as the <u>Emergency Planning</u> & <u>Community Right to Know Act</u> (EPCRA), includes plans for response to chemical emergencies. Some facilities file reports on all releases of certain chemicals (~650) on the <u>Toxic Release Inventory</u> (TRI).

Toxic Substances Control Act (TSCA)

- 1976 Introduced.
- Main purpose is to track 75,000 industrial chemicals in the US.
- Supplements other statutes such as the Toxic Release Inventory (TRI) (see 11.4).

Pollution Prevention Act (1990)

- Focuses on reducing pollution through cost-effective changes in production, operation and raw materials use.
- Approach is "Waste Reduction At Source" (WRAS) rather than on waste treatment & disposal. Includes reduction of use of resources such energy, water, etc.


Occupational Safety and Health Act (OSHA)

• Very important *within* the facility, focuses on worker/workplace safety & health, for example by restricting exposure to toxic chemicals.

6.2. Waste Management

- Traditionally done as an afterthought
- With much tighter regulations now, waste management now taken seriously, as both a legal and an economic issue.
- We can classify waste as hazardous and nonhazardous.
- Alternatively may classify as controlled and uncontrolled.

Waste production in the European Union

Graph taken from EU waste statistics page

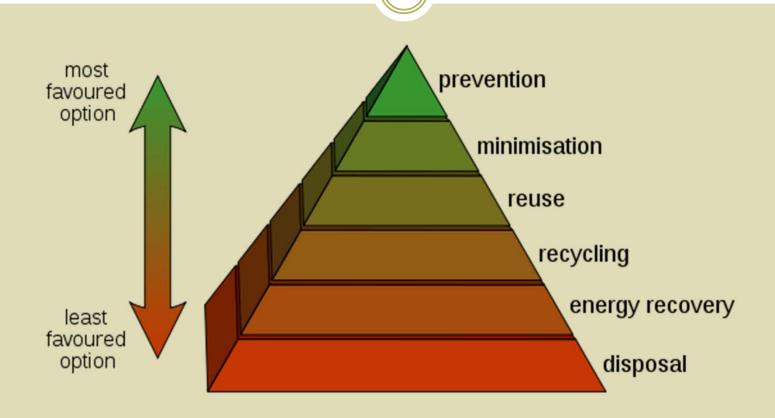
Waste production in the European Union

excluding mineral wastes. Population = 503 million

Waste hierarchy – the three Rs

REDUCE the amount you use (best)

RE-USE things instead of throwing them away


If you can't do the above, RECYCLE suitable materials such as paper, milk containers

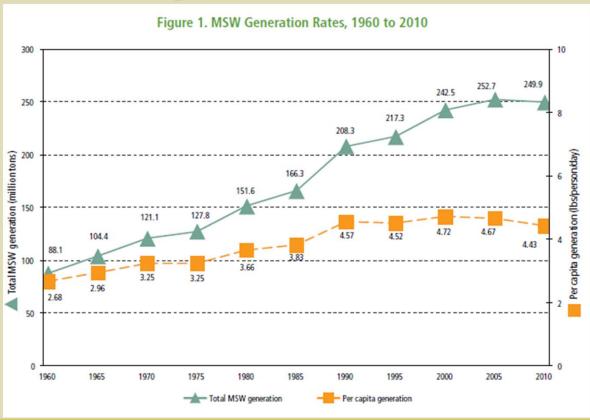
Rag and bone man.

Picture by Aviad2001,
CC0 license

The waste hierarchy:

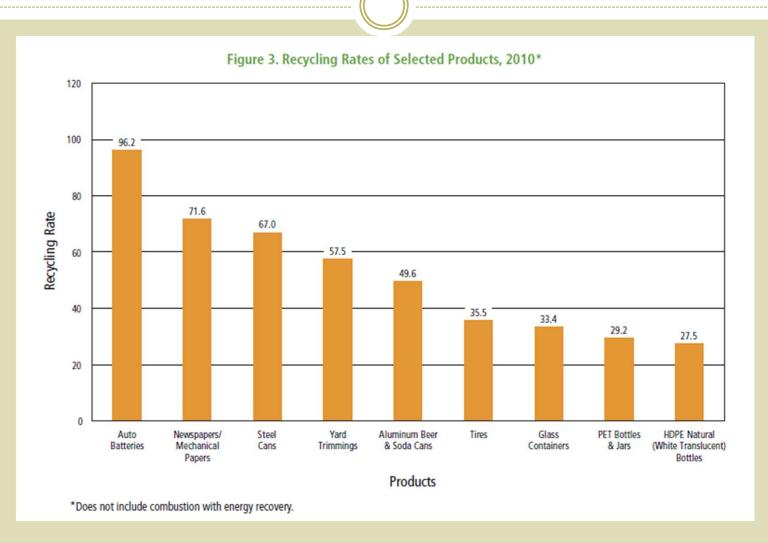
Graphic by Drstuey, Stannered, from Wikimedia Commons, CC license

Waste as a resource


- Recycling waste can both reduce waste going into the environment, and also reduce the amount of resources used in manufacturing.
- However, there is a cost- it can be expensive to do the conversion- e.g. to convert old milk cartons back to ethylene gas ready for re-use. Sometimes it may cost more in energy/materials than you save!
- With a focus on recycling R&D, new techniques are being found and developed.

Assimilative capacity of nature

- Part of the natural capital of an ecosystem is its ability to "assimilate" waste (i.e., to absorb and process it).
- If there is too much waste for an ecosystem to handle (e.g. the Hudson?), then the carrying capacity of that ecosystem has been exceeded.
- Either waste prevention/reduction is needed, or waste must be transported to other places.
- The assimilative capacity of the environment must be protected, as it provides a massive economic benefit to humankind.


6.5. Domestic waste

• Municipal solid waste (MSW) production in the US appears to have peaked:

Graph from EPA factsheet, 2010

Recycling of US domestic waste may be helping

Graph from EPA factsheet, 2010

US domestic waste

The EPA estimates that

- Americans generated around 250 million tons of waste, of which around 85 million tons (~34%) was recycled (65 Mt) or composted (20 Mt). 29 million tons was combusted for energy recovery.
- In 1980, 89% of MSW ended up in a landfill; by 2010, this had fallen to 54%.
- Composting rates have increased five-fold since 1990
- Recycling and composting more than 85 million tons of MSW saved the equivalent of over 229 million barrels of oil