Difference between revisions of "Cyclooctatetraene"

From WikiChem
Jump to: navigation, search
Line 12: Line 12:
 
|  SMILES = C1=C/C=C\C=C/C=C\1
 
|  SMILES = C1=C/C=C\C=C/C=C\1
 
|  CASNo = 629-20-9
 
|  CASNo = 629-20-9
|    CASNO_Ref = {{cascite}}
+
|    CASNo_Ref = {{cascite}}
 
|  RTECS = CY1400000
 
|  RTECS = CY1400000
 
|  InChI = 1/C8H8/c1-2-4-6-8-7-5-3-1/h1-8H/b2-1-,3-1-,4-2-,5-3-,6-4-,7-5-,8-6-,8-7-
 
|  InChI = 1/C8H8/c1-2-4-6-8-7-5-3-1/h1-8H/b2-1-,3-1-,4-2-,5-3-,6-4-,7-5-,8-6-,8-7-

Revision as of 20:46, 17 August 2009

Cyclooctatetraene
Cyclooctatetraene.png
Cyclooctatetraene-profile-3D-balls.png
Cyclooctatetraene-3d.png
IUPAC name 1,3,5,7-cyclooctatetraene
Other names COT, [8]-annulene
Identifiers
InChI InChI=1/C8H8/c1-2-4-6-8-7-5-3-1/h1-8H/b2-1-,3-1-,4-2-,5-3-,6-4-,7-5-,8-6-,8-7-
InChIKey KDUIUFJBNGTBMD-BONZMOEMBR
Standard InChI InChI=1S/C8H8/c1-2-4-6-8-7-5-3-1/h1-8H/b2-1-,3-1-,4-2-,5-3-,6-4-,7-5-,8-6-,8-7-
Standard InChIKey KDUIUFJBNGTBMD-BONZMOEMSA-N
CAS number [629-20-9]
EC number 211-080-3
RTECS CY1400000
SMILES
Properties
Chemical formula C8H8
Molar mass 104.15 g/mol
Appearance Clear yellow
Density 0.9250 g/cm3, liquid
Melting point

–5 – –3 °C (268–270 K)

Boiling point

142 - 143 °C (415 - 416 K)

Solubility in water immiscible
Hazards
EU classification Flammable (F)
Carc. Cat. 1
Muta. Cat. 2
Toxic (T)
R-phrases Template:R45, Template:R46, Template:R11, Template:R36/38,
Template:R48/23/24/25, Template:R65
S-phrases Template:S53, Template:S45
NFPA 704
NFPA 704.png
 
 
 
 
Flash point −11 °C
Autoignition temp. 561 °C
Related compounds
Other hydrocarbons Cyclooctane
Tetraphenylene
Except where noted otherwise, data are given for materials in their standard state (at 25 °C, 100 kPa)

1,3,5,7-Cyclooctatetraene (COT) is an unsaturated derivative of cyclooctane, with the formula C8H8. It is also known as [8]annulene. This polyunsaturated hydrocarbon is a colorless to light yellow flammable liquid at room temperature. Because of its stoichiometric relationship to benzene, COT has been the subject of much research and some controversy.

Unlike benzene, C6H6, however, cyclooctatetraene, C8H8, is not aromatic. Its reactivity is characteristic of an ordinary polyene, i.e. it undergoes addition reactions. Benzene, by contrast, characteristically undergoes substitution reactions, not additions.

History

1,3,5,7-Cyclooctatetraene was initially synthesized by Richard Willstätter at Munich in 1905.[1][2]

Willstatter synthesis


Willstätter noted that the compound did not exhibit the expected aromaticity. Between 1939 and 1943, chemists throughout the US unsuccessfully attempted to synthesize COT. They rationalized their lack of success with the conclusion that Willstätter had not actually synthesized the compound but instead its isomer, styrene. Willstätter responded to these reviews in his autobiography, where he noted that the American chemists were 'untroubled' by the reduction of his cyclooctatetraene to cyclooctane (a reaction impossible for styrene). In 1947, Walter Reppe at Ludwigshafen at last repeated Willstätter's synthesis.[3]

Structure and Bonding

Cyclooctatetraene in its native "tub-shaped" conformation.

Early studies demonstrated that COT did not display the chemistry of an aromatic compound,[4] yet early electron diffraction experiments concluded that the C-C bond distances were identical.[5] However, X-Ray diffraction data from H.S. Kaufman demonstrated cyclooctatetraene to contain two distinct C-C bond distances.[6] This result indicated that COT is an annulene with fixed alternating single and double C-C bonds. In its normal state, cyclooctatetraene is non-planar and adopts a tub conformation with angles C=C-C = 126.1° and C=C-H = 117.6° (of the Cx atom in C-HCx=C bound).[7]

Chemistry

Reppe's Reaction

Richard Willstätter's original synthesis (4 consecutive elimination reactions on a cycloctane framework) gives relatively low yields. Reppe's synthesis of cyclooctatetraene, which involves treating acetylene at high pressure with a warm mixture of nickel cyanide and calcium carbide, was much better, with chemical yields near 90%[3]

Because COT is unstable and easily forms explosive organic peroxides, a small amount of hydroquinone is usually added to commercially available material. Testing for peroxides is advised when using a previously opened bottle; white crystals around the neck of the bottle may be composed of the peroxide, which may explode when mechanically disturbed.

The π bonds in COT react as usual for olefins, rather than as aromatic ring systems. Mono- and polyepoxides can be generated by reaction of COT with peroxy acids or with dimethyldioxirane. Various other addition reactions are also known. Furthermore, polyacetylene can been synthesized via the ring-opening polymerization of cyclooctatetraene.[8] COT itself —and also analogs with side-chains— have been used as metal ligands and in sandwich compounds.

Cyclooctatetraenide dianion

COT readily reacts with potassium metal to form the salt K2COT, which contains the dianion C8H82−.[9] The dianion is both planar in shape and aromatic with a Huckel electron count of 10. Cyclooctatetraene forms complexes with some metals, including yttrium and lanthanides. One-dimensional Eu-COT sandwiches have been described as nanowires.[10] The sandwich compounds U(COT)2, or uranocene and Fe(COT)2, are known.

Uranocene, a sandwich compound containing two COT rings.

The compound Fe(COT)2, when refluxed in toluene with dimethyl sulfoxide and dimethoxyethane for 5 days, is found to form magnetite and crystalline carbon also containing carbon nanotubes.[11]

Because COT changes conformation between tub-shaped and planar with addition or subtraction of electrons, it could, in principle, be used to construct artificial muscles. Such devices have been contemplated to be makeable by grafting COT derivatives to a backbone of a suitable conducting polymer, which would supply or remove the reducing equivalents.[12]

Natural occurrence

Cyclooctatetraene has been isolated from certain fungi.[13]

See also

References

  1. Mason, S. "The Science and Humanism of Linus Pauling (1901-1994)", Chemical Society Reviews 26, 1 (February 1997).
  2. Richard Willstätter, Ernst Waser (1911). "Über Cyclo-octatetraen". Berichte der deutschen chemischen Gesellschaft 44 (3): 3423–3445. doi:10.1002/cber.191104403216. 
  3. 3.0 3.1 Walter Reppe, Otto Schlichting, Karl Klager, Tim Toepel (1948). "Cyclisierende Polymerisation von Acetylen I Über Cyclooctatetraen". Justus Liebigs Annalen der Chemie 560 (1): 1–92. doi:10.1002/jlac.19485600102. 
  4. Johnson, A.W., Sci. Progress; 506; 1947; 35.
  5. Bastiensen, O.; Hassel, O.; Langseth, A. (1947). "The ‘Octa-Benzene’, Cyclo-octatetraene (C8H8)". Nature 160 (4056): 128. doi:10.1038/160128a0. 
  6. Kaufman, H. S.; Fankuchen, I.; Mark, H. (1948). "Structure of Cyclo-octatetraene". Nature 161 (4083): 165. doi:10.1038/161165a0. 
  7. Thomas, P. M.; Weber, A. (1978). "High resolution Raman spectroscopy of gases with laser sources. XIII - the pure rotational spectra of 1,3,5,7-cyclooctatetraene and 1,5-cyclooctadiene". Journal of Raman Spectroscopy 7 (6): 353–357. doi:10.1002/jrs.1250070614. 
  8. Two Undergraduate Experiments in Organic Polymers: The Preparation of Polyacetylene and Telechelic Polyacetylene via Ring-Opening Metathesis Polymerization Eric J. Moorhead and Anna G. Wenzel Journal of Chemical Education • Vol. 86 No. 8 August 2009 973
  9. The cyclooctatetraenyl dianion Thomas J. Katz J. Am. Chem. Soc.; 1960; 82(14); 3784-3785. DOI:10.1021/ja01499a077
  10. JST Nanostructed Materials Project Highlights- Prof. Nakajima's Presentation
  11. Crystalline Graphite from an Organometallic Solution-Phase Reaction Erich C. Walter, Tobias Beetz, Matthew Y. Sfeir, Louis E. Brus, and Michael L. Steigerwald J. Am. Chem. Soc.; 2006; 128(49) pp 15590 - 15591; (Communication) DOI:10.1021/ja0666203 10.1021/ja0666203
  12. UCR Fiat Lux: Muscle building - UCR researchers hope to create artificial muscles
  13. Stinson, M.; Ezra, D.; Hess, W. M.; Sears, J.; Strobel, G. “An endophytic Gliocladium sp. of Eucryphia cordifolia producing selective volatile antimicrobial compounds” Plant Science 2003, volume 165, pp. 913-922. DOI:10.1016/S0168-9452(03)00299-1
Error creating thumbnail: Unable to save thumbnail to destination
Wikipedia-logo.png This page was originally imported from Wikipedia, specifically this version of the article "Cyclooctatetraene". Please see the history page on Wikipedia for the original authors. This WikiChem article may have been modified since it was imported. It is licensed under the Creative Commons Attribution–Share Alike 3.0 Unported license.