Difference between revisions of "Decay chain"

From WikiChem
Jump to: navigation, search
(Actinoid decay chains)
(Actinium (4n+3) series)
Line 23: Line 23:
 
{| class="wikitable" style="text-align:center;"
 
{| class="wikitable" style="text-align:center;"
 
|-
 
|-
| colspan=2 | [[Uranium-235]]<br/>(α, 7.04{{e|8}} a)
+
| colspan=4 | [[Uranium-235]]<br/>(α, 7.04{{e|8}} a)
 
|-
 
|-
| colspan=2 | [[Thorium-231]]<br/>(β<sup>−</sup>, 25.52 h)
+
| colspan=4 | [[Thorium-231]]<br/>(β<sup>−</sup>, 25.52 h)
 
|-
 
|-
| colspan=2 | [[Protactinium-231]]<br/>(α, 3.276{{e|4}} a)
+
| colspan=4 | [[Protactinium-231]]<br/>(α, 3.276{{e|4}} a)
 
|-
 
|-
| colspan=2 | [[Actinium-227]]<br/>(21.772 a)
+
| colspan=4 | [[Actinium-227]]<br/>(21.772 a)
 
|-
 
|-
| α, 1.38% || β<sup>−</sup>, 98.62%
+
| β<sup>−</sup>, 98.62% || colspan=3 | α, 1.38%
 
|-
 
|-
| [[Francium-223]]<br/>(22.00 min) || [[Thorium-227]]<br/>(α, 18.68 d)
+
| rowspan=2 | [[Thorium-227]]<br/>(α, 18.68 d) || colspan=3 | [[Francium-223]]<br/>(22.00 min)
 
|-
 
|-
 +
| β<sup>−</sup>, 99.994% || colspan=2 | α, 0.006%
 +
|-
 +
| colspan=2 rowspan=2 | [[Radium-223]]<br/>(α, 11.43 d) || colspan=2 | [[Astatine-219]]<br/>(56 s)
 +
|-
 +
| β<sup>−</sup>, 3.00% || α, 97.00%
 +
|-
 +
| colspan=3 | [[Radon-219]]<br/>(α, 3.96 s) || [[Bismuth-215]]<br/>(β<sup>−</sup>, 7.6 min)
 +
|-
 +
| colspan=4 | [[Polonium-215]]<br/>(1.781 ms)
 +
|-
 +
| colspan=2 | α, 99.99977% || colspan=2 | β<sup>−</sup>, 0.00033%
 +
|-
 +
| colspan=2 | [[Lead-211]]<br/>(β<sup>−</sup>, 36.1 min) || colspan=2 | [[Astatine-215]]<br/>(α, 0.1 ms)
 +
|-
 +
| colspan=4 | [[Bismuth-211]]<br/>(2.14 min)
 +
|-
 +
| colspan=2 | α, 99.724% || colspan=2 | β<sup>−</sup>, 0.276%
 +
|-
 +
| colspan=2 | [[Thallium-207]]<br/>(β<sup>−</sup>, 4.77 min) || colspan=2 | [[Polonium-211]]<br/>(α, 516 ms)
 +
|-
 +
| colspan=4 | [[Lead-207]]<br/>(STABLE)
 
|}
 
|}
  

Revision as of 09:42, 18 April 2011

A decay chain, also called a radioactive series, is a sequence of nuclides in which each nuclide transforms into the next by radioactive decay until a stable nuclide is reached.[1] There are three "classical" decay chains, which describe the decay of the naturally-occuring actinoids; a fourth long decay chain has become extinct in natural sources, but is known from artificially-produced radionuclides.[2] Shorter decay chains describe the decay of the transfermium elements and lighter non-actinoid radionuclides.

The principle of a decay chain comes from the radioactive displacement law, deduced in 1913 by Fajans,[3][4] Soddy[5][6] and Russell.[7] The original version of the law, which describes the most common forms of radioactive decay, is that

The discovery (1914) of a difference in atomic weight between lead samples from thorium and uranium minerals,[8][9] as predicted by Fajans,[3] was conclusive proof of the corresponding decay chains.[10][11]

Actinoid decay chains

Because alpha decay changes the mass number by four, while beta decay does not change the mass number at all, all the nuclides in a decay chain have the same value of mod 4(A), and the chains can be distinguished as those where A = 4n, or 4n+1, etc. for all the nuclides in the chain.

Thorium (4n) series

Neptunium (4n+1) series

Uranium (4n+2) series

Actinium (4n+3) series

Uranium-235
(α, 7.04 × 108 a)
Thorium-231
, 25.52 h)
Protactinium-231
(α, 3.276 × 104 a)
Actinium-227
(21.772 a)
β, 98.62% α, 1.38%
Thorium-227
(α, 18.68 d)
Francium-223
(22.00 min)
β, 99.994% α, 0.006%
Radium-223
(α, 11.43 d)
Astatine-219
(56 s)
β, 3.00% α, 97.00%
Radon-219
(α, 3.96 s)
Bismuth-215
, 7.6 min)
Polonium-215
(1.781 ms)
α, 99.99977% β, 0.00033%
Lead-211
, 36.1 min)
Astatine-215
(α, 0.1 ms)
Bismuth-211
(2.14 min)
α, 99.724% β, 0.276%
Thallium-207
, 4.77 min)
Polonium-211
(α, 516 ms)
Lead-207
(STABLE)

Notes and references

Notes

  1. This description applies to β decay, which was the only type of beta decay known in 1913.

References

  1. decay chain, <http://goldbook.iupac.org/D01537.html> (accessed 18 April 2011), Compendium of Chemical Terminology Internet edition; International Union of Pure and Applied Chemistry (IUPAC).
  2. Seaborg, Glenn T. The Neptunium (4n + 1) Radioactive Family. Chem. Eng. News 1948, 26 (26), 1902–6. DOI: 10.1021/cen-v026n026.p1902.
  3. 3.0 3.1 Fajans, Kasimir Die radioaktiven Umwandlungen und das periodische System der Elemente. Ber. Dtsch. Chem. Ges. 1913, 46, 422–39. DOI: 10.1002/cber.19130460162. Translated excerpt
  4. Fajans, K. Phys. Z. 1913, 14, 131–36. Fajans, K. Phys. Z. 1913, 14, 136–42. Fajans, K. Radium 1913, 10, 61.
  5. Soddy, Frederick The Radio-elements and the Periodic Law. Chem. News 1913, 107, 97–99, <http://web.lemoyne.edu/~giunta/soddycn.html>.
  6. Soddy, Frederick Radioactivity. Annu. Rep. Prog. Chem. 1913, 10, 262–88. DOI: 10.1039/AR9131000262.
  7. Russell, Alexander S. The periodic system and the radio-elements. Chem. News 1913, 107, 49–52.
  8. Soddy, Frederick; Hyman, Henry The atomic weight of lead from ceylon thorite. J. Chem. Soc., Trans. 1914, 105, 1402–8. DOI: 10.1039/CT9140501402.
  9. Richards, Theodore W.; Lembert, Max E. The Atomic Weight of Lead of Radioactive Origin. J. Am. Chem. Soc. 1914, 36 (7), 1329–44. DOI: 10.1021/ja02184a001.
  10. Anders, Oswald U. The place of isotopes in the periodic table: The 50th anniversary of the Fajans–Soddy displacement laws. J. Chem. Educ. 1964, 41 (10), 522. DOI: 10.1021/ed041p522.
  11. Kauffman, George B. The atomic weight of lead of radioactive origin: A confirmation of the concept of isotopy and the group displacement laws. Part I. J. Chem. Educ. 1982, 59 (1), 3. DOI: 10.1021/ed059p3. Kauffman, George B. The atomic weight of lead of radioactive origin: A confirmation of the concept of isotopy and the group displacement laws. Part II. J. Chem. Educ. 1982, 59 (2), 119. DOI: 10.1021/ed059p119.

External links

Error creating thumbnail: Unable to save thumbnail to destination
This page is currently licensed under the Creative Commons Attribution 3.0 Unported license and any later versions of that license.