Difference between revisions of "Lithium aluminium hydride"

From WikiChem
Jump to: navigation, search
Line 5: Line 5:
 
|  CASNo = 16853-85-3
 
|  CASNo = 16853-85-3
 
|    CASNo_Ref = {{cascite}}
 
|    CASNo_Ref = {{cascite}}
 +
|  EINECS = 240-877-9
 +
|  ChemSpiderID = 26150
 +
|  InChI=1/Al.Li.4H/q-1;+1;;;;/rAlH4.Li/h1H4;/q-1;+1
 +
|  InChIkey = OCZDCIYGECBNKL-PDCCDREHAZ
 +
|  StdInChI = 1S/Al.Li.4H/q-1;+1;;;;
 +
|  StdInChIkey = OCZDCIYGECBNKL-UHFFFAOYSA-N
 
|  RTECS = BD0100000
 
|  RTECS = BD0100000
 
   }}
 
   }}
 
| Section2 = {{Chembox Properties
 
| Section2 = {{Chembox Properties
 
|  Formula = LiAlH<sub>4</sub>
 
|  Formula = LiAlH<sub>4</sub>
|  MolarMass = 37.95 g/mol
+
|  MolarMass = 37.954 g&thinsp;mol<sup>–1</sup>
|  Appearance = white crystals (pure samples)<br />grey powder (commercial material) <br> [[hygroscopic]]
+
|  Appearance = white or grey solid
|  Density = 0.917 g/cm<sup>3</sup>, solid
+
|  Density = 0.917 g&thinsp;cm<sup>–3</sup>
|  Solubility = reactive
+
|  Solubility = reacts
 
|  MeltingPt = 150 °C (423 K), decomposing
 
|  MeltingPt = 150 °C (423 K), decomposing
 
   }}
 
   }}
Line 20: Line 26:
 
|  CrystalStruct = [[monoclinic]]
 
|  CrystalStruct = [[monoclinic]]
 
|  SpaceGroup = P2<sub>1</sub>c
 
|  SpaceGroup = P2<sub>1</sub>c
 +
  }}
 +
| Section4 = {{Chembox Thermochemistry
 +
|  Reference = <ref name="NIST">{{NIST chemistry|id=1S/Al.Li.4H/q-1;+1;;;;|name=Lithium tetrahydroaluminate|accessdate=2010-06-20}}.</ref><ref>{{citation | last1 = Smith | first1 = Martin B. | last2 = Bass | first2 = George E., Jr. | title = Heats and Free Energies of Formation of the Alkali Aluminum Hydrides and of Cesium Hydride | journal = J. Chem. Eng. Data | year = 1963 | volume = 8 | issue = 3 | pages = 342–46 | doi = 10.1021/je60018a020}}.</ref>
 +
|  DeltaHf = –117.15 kJ/mol
 +
|  Entropy = 87.90 J&thinsp;K<sup>–1</sup>&thinsp;mol<sup>–1</sup>
 
   }}
 
   }}
 
| Section7 = {{Chembox Hazards
 
| Section7 = {{Chembox Hazards
Line 40: Line 51:
 
It was first prepared from the reaction between [[lithium hydride]] (LiH) and [[aluminium chloride]]:<ref>{{citation | last1 = Finholt | first1 = A. E. | last2 = Bond | first2 = A. C. | last3 = Schlesinger | first3 = H. I.| title = Lithium Aluminum Hydride, Aluminum Hydride and Lithium Gallium Hydride, and Some of their Applications in Organic and Inorganic Chemistry | journal = J. Am. Chem. Soc. | year = 1947 | volume = 69 | issue = 5 | pages = 1199–1203 | doi = 10.1021/ja01197a061}}.</ref>
 
It was first prepared from the reaction between [[lithium hydride]] (LiH) and [[aluminium chloride]]:<ref>{{citation | last1 = Finholt | first1 = A. E. | last2 = Bond | first2 = A. C. | last3 = Schlesinger | first3 = H. I.| title = Lithium Aluminum Hydride, Aluminum Hydride and Lithium Gallium Hydride, and Some of their Applications in Organic and Inorganic Chemistry | journal = J. Am. Chem. Soc. | year = 1947 | volume = 69 | issue = 5 | pages = 1199–1203 | doi = 10.1021/ja01197a061}}.</ref>
 
:4 LiH + AlCl<sub>3</sub> → LiAlH<sub>4</sub> + 3 LiCl
 
:4 LiH + AlCl<sub>3</sub> → LiAlH<sub>4</sub> + 3 LiCl
In addition to this method, the industrial synthesis entails the initial preparation of sodium aluminium hydride from the elements under high pressure and temperature:<ref name="HollemanAF">{{Holleman&Wiberg102nd}}.</ref>
+
The modern industrial synthesis involves the initial preparation of sodium aluminium hydride from the elements under high pressure and temperature:<ref name="H&W">{{Holleman&Wiberg102nd}}.</ref>
 
:Na + Al + 2 H<sub>2</sub> → NaAlH<sub>4</sub>
 
:Na + Al + 2 H<sub>2</sub> → NaAlH<sub>4</sub>
  
Line 46: Line 57:
 
:NaAlH<sub>4</sub> + LiCl → LiAlH<sub>4</sub> + NaCl
 
:NaAlH<sub>4</sub> + LiCl → LiAlH<sub>4</sub> + NaCl
  
which proceeds in a high yield of LAH. LiCl is removed by [[filtration]] from an [[ether]]eal solution of LAH, with subsequent precipitation of LAH to yield a product containing around 1% ''w''/''w'' LiCl.<ref name="HollemanAF"/>
+
which proceeds in a high yield of LAH. [[Lithium chloride]] is removed by [[filtration]] from an [[Diethyl ether|ethereal]] solution of LAH, with subsequent precipitation of LAH to yield a product containing around 1% LiCl by mass.<ref name="H&W"/>
  
 
==References==
 
==References==

Revision as of 09:31, 20 June 2010

Lithium aluminium hydride
IUPAC name Lithium tetrahydridoaluminate(1−)
Identifiers
InChI InChI=1/Al.Li.4H/q-1;+1;;;;/rAlH4.Li/h1H4;/q-1;+1
Standard InChI InChI=1S/Al.Li.4H/q-1;+1;;;;
CAS number [16853-85-3]
EC number 240-877-9
RTECS BD0100000
ChemSpider 26150
Properties
Chemical formula LiAlH4
Molar mass 37.954 g mol–1
Appearance white or grey solid
Density 0.917 g cm–3
Melting point

150 °C (423 K), decomposing

Solubility in water reacts
Structure[1]
Crystal structure monoclinic
Space group P21c
Coordination geometry tetrahedral (Al)
Thermochemistry[2][3]
Std enthalpy of formation ΔfHo298 –117.15 kJ/mol
Standard molar entropy So298 87.90 J K–1 mol–1
Hazards[4]
EU index number 001-002-00-4
GHS pictograms Water-react. 1
GHS signal word DANGER
GHS hazard statements H260
Related compounds
Other hydride aluminium hydride
sodium borohydride
sodium hydride
Except where noted otherwise, data are given for materials in their standard state (at 25 °C, 100 kPa)

Lithium aluminium hydride, LiAlH4, often abbreviated to LAH or "Lithal", is the lithium salt of the tetrahydridoaluminate(1−) anion. A moderately air-stable white or grey solid, it is widely used as a strong reducing agent in organic synthesis.

It was first prepared from the reaction between lithium hydride (LiH) and aluminium chloride:[5]

4 LiH + AlCl3 → LiAlH4 + 3 LiCl

The modern industrial synthesis involves the initial preparation of sodium aluminium hydride from the elements under high pressure and temperature:[6]

Na + Al + 2 H2 → NaAlH4

LAH is then prepared by metathesis reaction according to:

NaAlH4 + LiCl → LiAlH4 + NaCl

which proceeds in a high yield of LAH. Lithium chloride is removed by filtration from an ethereal solution of LAH, with subsequent precipitation of LAH to yield a product containing around 1% LiCl by mass.[6]

References

  1. Løvvik, O. M.; Opalka, Susanne M.; Brinks, Hendrik W.; Hauback, Bjørn C. Crystal structure and thermodynamic stability of the lithium alanates LiAlH4 and Li3AlH6. Phys. Rev. B 2004, 69 (13), 134117. DOI: 10.1103/PhysRevB.69.134117.
  2. Lithium tetrahydroaluminate. In NIST Chemistry WebBook; National Institute for Standards and Technology, <http://webbook.nist.gov/cgi/inchi/InChI%3D1S/Al.Li.4H/q-1;+1;;;;>. (accessed 20 June 2010).
  3. Smith, Martin B.; Bass, George E., Jr. Heats and Free Energies of Formation of the Alkali Aluminum Hydrides and of Cesium Hydride. J. Chem. Eng. Data 1963, 8 (3), 342–46. DOI: 10.1021/je60018a020.
  4. Index no. 001-002-00-4 of Annex VI, Part 3, to Regulation (EC) No 1272/2008 of the European Parliament and of the Council of 16 December 2008 on classification, labelling and packaging of substances and mixtures, amending and repealing Directives 67/548/EEC and 1999/45/EC, and amending Regulation (EC) No 1907/2006. OJEU L353, 31.12.2008, pp 1–1355 at p 340.
  5. Finholt, A. E.; Bond, A. C.; Schlesinger, H. I. Lithium Aluminum Hydride, Aluminum Hydride and Lithium Gallium Hydride, and Some of their Applications in Organic and Inorganic Chemistry. J. Am. Chem. Soc. 1947, 69 (5), 1199–1203. DOI: 10.1021/ja01197a061.
  6. 6.0 6.1 Holleman, A. F.; Wiberg, E.; Wiberg, N. Lehrbuch der Anorganischen Chemie, 102nd ed.; de Gruyter, 2007. ISBN 978-3-11-017770-1.

External links