Chem321:Discussion 10

From WikiChem
Revision as of 22:22, 29 July 2015 by Alexanderlevitz (talk | contribs) (Alexander Levitz)
Jump to: navigation, search
THE SUSTAINABLE
WORLD
(Chemistry 321)
Earth from space
MAIN PAGE
SyllabusSchedule
Welcome page
Contact Dr. Walker
This week
Today's tasks(tomorrow)
Course units
1 - 2 - 3 - 4 - 5 - 6 - 7
8 - 9 - 10 - 11 - 12 - 13 - 14
Moodle site

Course content
Assignments

Paper - Acme - 1 - 2 - 3 - 4 - 5
Final exam - Practice final

Practice problems
Discussions

General wiki help
Basic editing
Create an account
Protocols
Tutorial
Demo, for practice

Look at the winners of the Presidential Green Chemistry Challenge, and pick out one winner. Below (under the header with your name), describe how the technology exemplifies green chemistry, and also mention any shortcomings or limitations of the technology.

Post an answer on one such technology by 11:59pm on Wednesday, July 29th, 2015. Then post one followup comment on another student's answer by 11:59pm on Friday, July 31st, 2015.

Katie Fetcie

Grant Gallagher

Alexander Levitz

I chose the 2010 Small Business Award for the microbial production of renewable petroleum fuels and chemicals, which is a phenomenally awesome and laudable process. This process employs microbes to synthesize products like Ultraclean diesel and a variety of other chemicals, as it exploits their natural abilities to metabolize various fermentable sugars (this process is also tailored through the utilization of recombinant technologies, which allow for the introduction of new biochemical pathways in these various microbes). These processes are superior to the other biofuel production processes, as these microbes do not require the addition of metal catalysts, and the microbes are capable of secreting the finished fuels or chemicals into the growth media. This advent exemplifies green chemistry as it improves the efficiency of a chemical process whilst simultaneously reducing the overall environmental impact. For example, the utilization of this method in producing biofuels eliminates the benzene, sulfur, and heavy metals found in traditional petroleum-based diesel, thus reducing the amount of adverse waste produced, and improving the overall affordability. Alexanderlevitz (talk) 23:22, 29 July 2015 (EDT)

Triston Riley

2015 Specific Environmental Benefit: Climate Change Award. The technology that won this award was The Algenol Biofuel Process, this process developed a blue-green algae to produce ethanol and other fuels. This exemplifies green chemistry because of the fact that this is a smart way to create a cleaner fuel. It is also a good way to reduce the carbon foot print from creating gas with ethanol thats in it. So not only does this technology reduce our environmental impact, but it is a sophisticated new method for developing and or replacing gasoline better. The only real limitation of this technology is the fact that it only converts 80% of the photosynthetically fixed carbon into ethanol, and also that they can only absorb so much photons, and actually still be able to use them for this process. Rileytc197 (talk) 08:31, 28 July 2015 (EDT)

Triston - yes, that's a really cool choice! Which green chemistry principles do you think would apply here? Martin A. Walker (talk) 16:29, 28 July 2015 (EDT)

I think that for sure the principles of preventing waste, this also creates a less hazardous chemical synthesis. It even increases the energy efficiency since instead of using energy to create the ethanol, it is made naturally. Rileytc197 (talk) 17:31, 28 July 2015 (EDT)

Alexane Rodrigue

I chose the 2013 Greener Synthetic Pathways Award because I believe it exemplifies green chemistry perfectly by finding a way to improve the manufacturing of PCR reagents so that it is more environmentally friendly. Polymerase chain reactions are used all the time in research, yet they tend to produce a lot of hazardous waste. Green chemistry is demonstrated many times with this pathway because it lowers the amount of steps in the reaction, lowers organic solvent use by 95%, lowers hazardous waste by 65%. The E-factor has been reduced from 3200 to 400, which prevents 1.5 million pounds of waste. They have also improved specificity of the reaction which is an important step when it comes to chemistry, and they minded their use of volatile solvents and reagents. I can't really find a short-coming for this process as it seems to completely incorporate most of steps of green chemistry into one process that is much more efficient than the older one. Rodrigaf197 (talk) 19:59, 29 July 2015 (EDT)

Jasmine Ruiz

Jillian Visser

Any general comments