Difference between revisions of "Perbromate"

From WikiChem
Jump to: navigation, search
Line 10: Line 10:
 
   }}
 
   }}
 
| Section3 = {{Chembox Structure
 
| Section3 = {{Chembox Structure
|  Reference = <ref>{{citation | first1 = William | last1 = Levason | first2 = J. Steven | last2 = Ogden | first3 = Mark D. | last3 = Spicer | first4 = Nigel A. | last4 = Young | title = Characterisation of the oxo-anions of bromine BrO<sub>''x''</sub><sup>−</sup> (''x''&nbsp;= 1–4) by infrared, Raman, nuclear magnetic resonance, and bromine ''K''-edge extended X-ray absorption fine structure techniques | journal = J. Chem. Soc., Dalton Trans. | year = 1990 | issue = 1 | pages = 349–53 | doi = 10.1039/DT9900000349}}.</ref>
+
|  Reference = <ref name="EXAFS">{{citation | first1 = William | last1 = Levason | first2 = J. Steven | last2 = Ogden | first3 = Mark D. | last3 = Spicer | first4 = Nigel A. | last4 = Young | title = Characterisation of the oxo-anions of bromine BrO<sub>''x''</sub><sup>−</sup> (''x''&nbsp;= 1–4) by infrared, Raman, nuclear magnetic resonance, and bromine ''K''-edge extended X-ray absorption fine structure techniques | journal = J. Chem. Soc., Dalton Trans. | year = 1990 | issue = 1 | pages = 349–53 | doi = 10.1039/DT9900000349}}.</ref>
 
|  MolShape = tetrahedral: ''r''(Br–O) = 161&nbsp;pm
 
|  MolShape = tetrahedral: ''r''(Br–O) = 161&nbsp;pm
 
   }}
 
   }}
Line 28: Line 28:
  
 
==History==
 
==History==
Although [[perchlorate]]s and [[periodate]]s have been known since the early nineteenth century, perbromates proved far more elusive. The first claim of preparation came in 1863,<ref>{{citation | first = Hermann | last = Kämmerer | title = Notizen | journal = J. Prakt. Chem. | year = 1863 | volume = 90 | pages = 190 | doi = 10.1002/prac.18630900126}}. {{citation | first = Hermann | last = Kaemmerer | title = Studien über die Sauerstoffverbindungen der Halogene | journal = Ann. Phys. (Berlin) | volume = 214 | issue = 11 | pages = 390–417 | year = 1869 | doi = 10.1002/andp.18692141104}}.</ref> but proved unrepeatable.<ref>{{citation | first = M. M. | last = Pattison Muir | title = Note on the perbromates | journal = J. Chem. Soc. | year = 1876 | volume = 30 | page = 469 | doi = 10.1039/JS8763000469}}.</ref><ref>{{citation | first = Guido | last = Wolfram | title = Ueber die Darstellung der Perbromsäure | journal = Justus Liebigs Ann. Chem. | year = 1879 | volume = 198 | issue = 1–2 | pages = 95–98 | doi = 10.1002/jlac.18791980107}}.</ref> Several later attempts to prepare perbromates were equally unsuccessful.<ref>{{citation | first = Ernest H. | last = Cook | title = Effect of heat on iodates and bromates. I. Potassic iodate and bromate | journal = J. Chem. Soc., Trans. | year = 1894 | volume = 65 | pages = 802–14 | doi = 10.1039/CT8946500802}}.</ref><ref>{{citation | first1 = G. M. | last1 = Bancroft | first2 = H. D. | last2 = Gesser | title = The search for perbromate—I: The thermal decomposition of bromates | journal = J. Inorg. Nucl. Chem. | year = 1965 | volume = 27 | issue = 7 | pages = 1545–56 | doi = 10.1016/0022-1902(65)80016-1}}.</ref> Some authors surmised that perbromates were fundamentally unstable.<ref>{{citation | first = Z. Z., Jr. | last = Hugus | title = The Possible Use of 4f Orbitals in Bonding: the Enhanced Stability of the Higher Oxidation States of Iodine, Tellurium and Antimony; the Non-existence of Perbromic Acid | journal = J. Am. Chem. Soc. | year = 1952 | volume = 74 | issue = 4 | pages = 1076–77 | doi = 10.1021/ja01124a502}}.</ref><ref>{{citation | first = D. S. | last = Urch | title = The perbromate problem | journal = J. Inorg. Nucl. Chem. | year = 1963 | volume = 25 | issue = 7 | pages = 771–78 | doi = 10.1016/0022-1902(63)80360-7}}.</ref>
+
Although [[perchlorate]]s and [[periodate]]s have been known since the early nineteenth century, perbromates proved far more elusive.<ref>{{citation | title = The elusive perbromates | first1 = A. Y. | last1 = Herrell | first2 = K. H. | last2 = Gayer | journal = J. Chem. Educ. | year = 1972 | volume = 49 | issue = 9 | page = 583 | doi = 10.1021/ed049p583}}.</ref><ref>{{citation | title = Nonexistent compounds. Two case histories | first = Evan H. | last = Appelman | journal = Acc. Chem. Res. | year = 1973 | volume = 6 | issue = 4 | pages = 113–17 | doi = 10.1021/ar50064a001}}.</ref> The first claim of preparation came in 1863,<ref>{{citation | first = Hermann | last = Kämmerer | title = Notizen | journal = J. Prakt. Chem. | year = 1863 | volume = 90 | pages = 190 | doi = 10.1002/prac.18630900126}}. {{citation | first = Hermann | last = Kaemmerer | title = Studien über die Sauerstoffverbindungen der Halogene | journal = Ann. Phys. (Berlin) | volume = 214 | issue = 11 | pages = 390–417 | year = 1869 | doi = 10.1002/andp.18692141104}}.</ref> but proved unrepeatable.<ref>{{citation | first = M. M. | last = Pattison Muir | title = Note on the perbromates | journal = J. Chem. Soc. | year = 1876 | volume = 30 | page = 469 | doi = 10.1039/JS8763000469}}.</ref><ref>{{citation | first = Guido | last = Wolfram | title = Ueber die Darstellung der Perbromsäure | journal = Justus Liebigs Ann. Chem. | year = 1879 | volume = 198 | issue = 1–2 | pages = 95–98 | doi = 10.1002/jlac.18791980107}}.</ref> Several later attempts to prepare perbromates were equally unsuccessful.<ref>{{citation | first = Ernest H. | last = Cook | title = Effect of heat on iodates and bromates. I. Potassic iodate and bromate | journal = J. Chem. Soc., Trans. | year = 1894 | volume = 65 | pages = 802–14 | doi = 10.1039/CT8946500802}}.</ref><ref>{{citation | first1 = G. M. | last1 = Bancroft | first2 = H. D. | last2 = Gesser | title = The search for perbromate—I: The thermal decomposition of bromates | journal = J. Inorg. Nucl. Chem. | year = 1965 | volume = 27 | issue = 7 | pages = 1545–56 | doi = 10.1016/0022-1902(65)80016-1}}.</ref> Some authors surmised that perbromates were fundamentally unstable.<ref>{{citation | first = Z. Z., Jr. | last = Hugus | title = The Possible Use of 4f Orbitals in Bonding: the Enhanced Stability of the Higher Oxidation States of Iodine, Tellurium and Antimony; the Non-existence of Perbromic Acid | journal = J. Am. Chem. Soc. | year = 1952 | volume = 74 | issue = 4 | pages = 1076–77 | doi = 10.1021/ja01124a502}}.</ref><ref>{{citation | first = D. S. | last = Urch | title = The perbromate problem | journal = J. Inorg. Nucl. Chem. | year = 1963 | volume = 25 | issue = 7 | pages = 771–78 | doi = 10.1016/0022-1902(63)80360-7}}.</ref>
  
 
The first clear evidence of the existence of the perbromate anion came from "hot-atom" techniques. A sample of the β<sup>−</sup>-emittor [[selenium-83]] (''t''<sub>½</sub>&nbsp;= 25&nbsp;min) was prepared in the form of the [[selenate]] anion SeO{{su|b=4|p=2−}} and allowed to decay into [[bromine-83]]. Approximately 14% of the <sup>83</sup>Br activity (β<sup>−</sup>, ''t''<sub>½</sub>&nbsp;= 2.4&nbsp;h) coprecipitated with [[rubidium perchlorate]], as expected for a perbromate species.<ref name="1st"/>
 
The first clear evidence of the existence of the perbromate anion came from "hot-atom" techniques. A sample of the β<sup>−</sup>-emittor [[selenium-83]] (''t''<sub>½</sub>&nbsp;= 25&nbsp;min) was prepared in the form of the [[selenate]] anion SeO{{su|b=4|p=2−}} and allowed to decay into [[bromine-83]]. Approximately 14% of the <sup>83</sup>Br activity (β<sup>−</sup>, ''t''<sub>½</sub>&nbsp;= 2.4&nbsp;h) coprecipitated with [[rubidium perchlorate]], as expected for a perbromate species.<ref name="1st"/>
Line 38: Line 38:
 
:BrO{{su|b=3|p=−}} + F<sub>2</sub> + 2 OH<sup>−</sup> &rarr; BrO{{su|b=4|p=−}} + 2 F<sup>−</sup> + H<sub>2</sub>O
 
:BrO{{su|b=3|p=−}} + F<sub>2</sub> + 2 OH<sup>−</sup> &rarr; BrO{{su|b=4|p=−}} + 2 F<sup>−</sup> + H<sub>2</sub>O
 
The yield is about 20%, and the reaction can be operated on a 100-gram scale. [[Perbromic acid]] can be prepared from the resulting [[sodium perbromate]] by [[ion exchange]], and used to prepare other perbromates.<ref>{{citation | first = E. H. | last = Appelman | title = Perbromic acid and potassium perbromate | journal = Inorg. Synth. | year = 1972 | volume = 13 | pages = 1–9 | doi = 10.1002/9780470132449.ch1}}.</ref>
 
The yield is about 20%, and the reaction can be operated on a 100-gram scale. [[Perbromic acid]] can be prepared from the resulting [[sodium perbromate]] by [[ion exchange]], and used to prepare other perbromates.<ref>{{citation | first = E. H. | last = Appelman | title = Perbromic acid and potassium perbromate | journal = Inorg. Synth. | year = 1972 | volume = 13 | pages = 1–9 | doi = 10.1002/9780470132449.ch1}}.</ref>
 +
 +
==Structure==
 +
{| class="wikitable" align=right
 +
|-
 +
! &nbsp;
 +
! ''r''(Br–O)/pm
 +
! Ref.
 +
|-
 +
| CsBrO<sub>4</sub> || 159.1 || align=center | <ref>{{citation | first1 = Elizabeth | last1 = Gebert | first2 = Selmer W. | last2 = Peterson | first3 = Arthur H., Jr. | last3 = Reis | first4 = Evan H. | last4 = Appelman | title = The crystal structure of cesium perbromate | journal = J. Inorg. Nucl. Chem. | volume = 43 | issue = 12 | year = 1981 | pages = 3085–89 | doi = 10.1016/0022-1902(81)80067-X}}.</ref>
 +
|-
 +
| LiBrO<sub>4</sub>·3H<sub>2</sub>O || 160.6 || align=center | <ref>{{citation | first1 = A. C. | last1 = Blackburn | first2 = J. C. | last2 = Gallucci | first3 = R. E. | last3 = Gerkin | first4 = W. J. | last4 = Reppart | title = Structure of lithium perbromate trihydrate | journal = Acta Crystallogr., Sect. C: Cryst. Struct. Commun. | year = 1993 | volume = 49 | issue = 8 | pages = 1437–39 | doi = 10.1107/S0108270193000538}}.</ref>
 +
|-
 +
| Ba(BrO<sub>4</sub>)<sub>2</sub>·3H<sub>2</sub>O || 160.8 || align=center | <ref>{{citation | first1 = R. E. | last1 = Gerkin | first2 = W. J. | last2 = Reppart | first3 = E. H. | last3 = Appelman | title = The structure of barium perbromate trihydrate Ba(BrO<sub>4</sub>)<sub>2</sub>.3H<sub>2</sub>O | journal = Acta Crystallogr., Sect. C: Cryst. Struct. Commun. | year = 1988 | volume = 44 | issue = 6 | pages = 960–62 | doi = 10.1107/S0108270188002215}}.</ref>
 +
|-
 +
| ''[[EXAFS]]'' || 161 || align=center | <ref name="EXAFS"/>
 +
|-
 +
| [Ni(H<sub>2</sub>O)<sub>6</sub>](BrO<sub>4</sub>)<sub>2</sub> || 162.9 || align=center | <ref>{{citation | first1 = J. C. | last1 = Gallucci | first2 = R. E. | last2 = Gerkin | first3 = W. J. | last3 = Reppart | title = Structure of nickel(II) perbromate hexahydrate at 296&nbsp;K | journal = Acta Crystallogr., Sect. C: Cryst. Struct. Commun. | year = 1990 | volume = 46 | issue = 9 | pages = 1580–84 | doi = 10.1107/S0108270189013533}}.</ref>
 +
|-
 +
|}
 +
The perbromate ion has ''T<sub>d</sub>'' symmetry.
  
 
==Notes and references==
 
==Notes and references==
Line 47: Line 67:
  
 
===Further reading===
 
===Further reading===
*{{citation | title = Nonexistent compounds. Two case histories | first = Evan H. | last = Appelman | journal = Acc. Chem. Res. | year = 1973 | volume = 6 | issue = 4 | pages = 113–17 | doi = 10.1021/ar50064a001}}.
 
 
*{{citation | title = Heat capacity of potassium perbromate, KBrO<sub>4</sub>, between 5 and 350°K | first1 = Felix | last1 = Schreiner | first2 = Darrell W. | last2 = Osborne | first3 = Alphonsus V. | last3 = Pocius | first4 = Evan H. | last4 = Appelman | journal = Inorg. Chem. | year = 1970 | volume = 9 | issue = 10 | pages = 2320–24 | doi = 10.1021/ic50092a024}}.
 
*{{citation | title = Heat capacity of potassium perbromate, KBrO<sub>4</sub>, between 5 and 350°K | first1 = Felix | last1 = Schreiner | first2 = Darrell W. | last2 = Osborne | first3 = Alphonsus V. | last3 = Pocius | first4 = Evan H. | last4 = Appelman | journal = Inorg. Chem. | year = 1970 | volume = 9 | issue = 10 | pages = 2320–24 | doi = 10.1021/ic50092a024}}.
 
*{{citation | first1 = Ulrik K. | last1 = Klaening | first2 = Kjeld J. | last2 = Olsen | first3 = Evan H. | last3 = Appelman | title = Photolysis of perbromate in aqueous solution | journal = J. Chem. Soc., Faraday Trans. 1 | volume = 71 | pages = 473–84 | year = 1975 | doi = 10.1039/F19757100473}}.
 
*{{citation | first1 = Ulrik K. | last1 = Klaening | first2 = Kjeld J. | last2 = Olsen | first3 = Evan H. | last3 = Appelman | title = Photolysis of perbromate in aqueous solution | journal = J. Chem. Soc., Faraday Trans. 1 | volume = 71 | pages = 473–84 | year = 1975 | doi = 10.1039/F19757100473}}.

Revision as of 11:06, 5 January 2011

Perbromate
Other names Tetraoxidobromate(1−)
Identifiers
InChI InChI=1/BrHO4/c2-1(3,4)5/h(H,2,3,4,5)/p-1
InChIKey LLYCMZGLHLKPPU-REWHXWOFAT
Standard InChI InChI=1S/BrHO4/c2-1(3,4)5/h(H,2,3,4,5)/p-1
Standard InChIKey LLYCMZGLHLKPPU-UHFFFAOYSA-M
CAS number [16474-32-1]
ChemSpider 4574125
Structure[1]
Molecular geometry tetrahedral: r(Br–O) = 161 pm
Thermochemistry[2][3]
Std enthalpy of formation ΔfHo298 +12.1 kJ mol−1 (aq)
Std Gibbs energy of formation ΔfGo298 +120.8 kJ mol−1 (aq)
Standard molar entropy So298 187 J K−1 mol−1 (aq)
Related compounds
Other anions Perchlorate
Periodate

Hypobromite
Bromite
Bromate
Except where noted otherwise, data are given for materials in their standard state (at 25 °C, 100 kPa)

A perbromate is a salt or ester of perbromic acid. Perbromates, including perbromic acid,[note 1] are the only well-characterized compounds of bromine in the +7 oxidation state.

Perbromates are thermodynamically more oxidizing than perchlorates or periodates, and eluded preparation for more than 100 years until 1968.[5][6][7] However, they are kinetically quite inert, especially in dilute solution.[6][7][8]

History

Although perchlorates and periodates have been known since the early nineteenth century, perbromates proved far more elusive.[9][10] The first claim of preparation came in 1863,[11] but proved unrepeatable.[12][13] Several later attempts to prepare perbromates were equally unsuccessful.[14][15] Some authors surmised that perbromates were fundamentally unstable.[16][17]

The first clear evidence of the existence of the perbromate anion came from "hot-atom" techniques. A sample of the β-emittor selenium-83 (t½ = 25 min) was prepared in the form of the selenate anion SeO2−4 and allowed to decay into bromine-83. Approximately 14% of the 83Br activity (β, t½ = 2.4 h) coprecipitated with rubidium perchlorate, as expected for a perbromate species.[5]

Electrolysis of lithium bromate at a platinum anode gave a yield of about 2% perbromate.[5] Small amounts of perbromate (1–4% yield) were also formed by the xenon difluoride oxidation of bromates, while perxenate, peroxodisulfate and ozone were ineffective as oxidizing agents.[5]

Preparation

The preparation of macroscopic quantities of perbromates relies on the oxidation of sodium bromate[note 2] in alkaline solution (5 M sodium hydroxide) by gaseous fluorine:

BrO3 + F2 + 2 OH → BrO4 + 2 F + H2O

The yield is about 20%, and the reaction can be operated on a 100-gram scale. Perbromic acid can be prepared from the resulting sodium perbromate by ion exchange, and used to prepare other perbromates.[19]

Structure

  r(Br–O)/pm Ref.
CsBrO4 159.1 [20]
LiBrO4·3H2O 160.6 [21]
Ba(BrO4)2·3H2O 160.8 [22]
EXAFS 161 [1]
[Ni(H2O)6](BrO4)2 162.9 [23]

The perbromate ion has Td symmetry.

Notes and references

Notes

  1. Perbromic acid is fully dissociated in solution. By analogy with perchloric acid,[4] the solid HBrO4·2H2O is expected to contain [(H2O)2H]+[BrO4].
  2. Sodium bromate is used as the resulting sodium perbromate is very soluble in water; potassium perbromate is much less soluble (as is the case with the corresponding perchlorates).[18]

References

  1. 1.0 1.1 Levason, William; Ogden, J. Steven; Spicer, Mark D.; Young, Nigel A. Characterisation of the oxo-anions of bromine BrOx (x = 1–4) by infrared, Raman, nuclear magnetic resonance, and bromine K-edge extended X-ray absorption fine structure techniques. J. Chem. Soc., Dalton Trans. 1990 (1), 349–53. DOI: 10.1039/DT9900000349.
  2. Johnson, Gerald K.; Smith, Peter N.; Appelman, Evan H.; Hubbard, Ward N. Thermodynamic properties of the perbromate and bromate ions. Inorg. Chem. 1970, 9 (1), 119–25. DOI: 10.1021/ic50083a025.
  3. Lee, C. L.; Lister, M. W. The Decomposition of Aqueous Sodium Bromite. Can. J. Chem. 1971, 49 (17), 2822–26. DOI: 10.1139/v71-470.
  4. Olovsson, Ivar Hydrogen-Bond Studies. XXIX. Crystal Structure of Perchloric Acid Dihydrate, H5O2+ClO4. J. Chem. Phys. 1968, 49 (3), 1063–67. DOI: 10.1063/1.1670193.
  5. 5.0 5.1 5.2 5.3 Appelman, Evan H. The Synthesis of Perbromates. J. Am. Chem. Soc. 1968, 90 (7), 1900–1. DOI: 10.1021/ja01009a040. Appelman, Evan H. Perbromic acid and perbromates: synthesis and some properties. Inorg. Chem. 1969, 8 (2), 223–27. DOI: 10.1021/ic50072a008.
  6. 6.0 6.1 Greenwood, Norman N.; Earnshaw, A. Chemistry of the Elements; Pergamon: Oxford, 1984; pp 1020–22. ISBN 0-08-022057-6.
  7. 7.0 7.1 Cotton, F. Albert; Wilkinson, Geoffrey Advanced Inorganic Chemistry, 5th ed.; Wiley-Interscience: New York, 1988; pp 568–69. ISBN 0-471-84997-9.
  8. Kjaer, A. M.; Ulstrup, J. Electron-transfer reactions between the perbromate ion and iron(II) complexes of 2,2'-bipyridine and substituted 1,10-phenanthrolines. Inorg. Chem. 1982, 21 (9), 3490–94. DOI: 10.1021/ic00139a044.
  9. Herrell, A. Y.; Gayer, K. H. The elusive perbromates. J. Chem. Educ. 1972, 49 (9), 583. DOI: 10.1021/ed049p583.
  10. Appelman, Evan H. Nonexistent compounds. Two case histories. Acc. Chem. Res. 1973, 6 (4), 113–17. DOI: 10.1021/ar50064a001.
  11. Kämmerer, Hermann Notizen. J. Prakt. Chem. 1863, 90, 190. DOI: 10.1002/prac.18630900126. Kaemmerer, Hermann Studien über die Sauerstoffverbindungen der Halogene. Ann. Phys. (Berlin) 1869, 214 (11), 390–417. DOI: 10.1002/andp.18692141104.
  12. Pattison Muir, M. M. Note on the perbromates. J. Chem. Soc. 1876, 30, 469. DOI: 10.1039/JS8763000469.
  13. Wolfram, Guido Ueber die Darstellung der Perbromsäure. Justus Liebigs Ann. Chem. 1879, 198 (1–2), 95–98. DOI: 10.1002/jlac.18791980107.
  14. Cook, Ernest H. Effect of heat on iodates and bromates. I. Potassic iodate and bromate. J. Chem. Soc., Trans. 1894, 65, 802–14. DOI: 10.1039/CT8946500802.
  15. Bancroft, G. M.; Gesser, H. D. The search for perbromate—I: The thermal decomposition of bromates. J. Inorg. Nucl. Chem. 1965, 27 (7), 1545–56. DOI: 10.1016/0022-1902(65)80016-1.
  16. Hugus, Z. Z., Jr. The Possible Use of 4f Orbitals in Bonding: the Enhanced Stability of the Higher Oxidation States of Iodine, Tellurium and Antimony; the Non-existence of Perbromic Acid. J. Am. Chem. Soc. 1952, 74 (4), 1076–77. DOI: 10.1021/ja01124a502.
  17. Urch, D. S. The perbromate problem. J. Inorg. Nucl. Chem. 1963, 25 (7), 771–78. DOI: 10.1016/0022-1902(63)80360-7.
  18. Ukeles, S. D.; Freiberg, M. Bromine, Inorganic Compounds. In Kirk-Othmer Encyclopedia of Chemical Technology; John Wiley: New York, 2002. DOI: 10.1002/0471238961.021815131001031.
  19. Appelman, E. H. Perbromic acid and potassium perbromate. Inorg. Synth. 1972, 13, 1–9. DOI: 10.1002/9780470132449.ch1.
  20. Gebert, Elizabeth; Peterson, Selmer W.; Reis, Arthur H., Jr.; Appelman, Evan H. The crystal structure of cesium perbromate. J. Inorg. Nucl. Chem. 1981, 43 (12), 3085–89. DOI: 10.1016/0022-1902(81)80067-X.
  21. Blackburn, A. C.; Gallucci, J. C.; Gerkin, R. E.; Reppart, W. J. Structure of lithium perbromate trihydrate. Acta Crystallogr., Sect. C: Cryst. Struct. Commun. 1993, 49 (8), 1437–39. DOI: 10.1107/S0108270193000538.
  22. Gerkin, R. E.; Reppart, W. J.; Appelman, E. H. The structure of barium perbromate trihydrate Ba(BrO4)2.3H2O. Acta Crystallogr., Sect. C: Cryst. Struct. Commun. 1988, 44 (6), 960–62. DOI: 10.1107/S0108270188002215.
  23. Gallucci, J. C.; Gerkin, R. E.; Reppart, W. J. Structure of nickel(II) perbromate hexahydrate at 296 K. Acta Crystallogr., Sect. C: Cryst. Struct. Commun. 1990, 46 (9), 1580–84. DOI: 10.1107/S0108270189013533.

Further reading

External links

Error creating thumbnail: Unable to save thumbnail to destination
This page is currently licensed under the Creative Commons Attribution 3.0 Unported license and any later versions of that license.