Berkelium
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Berkelium (symbol: Bk) is a synthetic chemical element and a member of the actinoid series. It is named after the city of Berkeley, California, the location of the University of California Radiation Laboratory where it was discovered in 1949.
Contents
Discovery
Berkelium was first produced in 1949 by the bombardment of an americium-241 target with α-particles: the nuclear reaction is 24195Am(α,2n)24397Bk. The product berkelium-243 (t½ = 4.5(2) hours) was separated by ion exchange chromatography, where it elutes just ahead of curium, its β+-decay product.[10][11][Note 4]
The new element was named after the city of Berkeley, California, by analogy with its lanthanoid homologue terbium, named after the village of Ytterby in Sweden.[11]
Production and use
The first macroscopic quantities (0.8 µg) of berkelium were isolated in 1958 after a six-year irradiation of plutonium-241 with neutrons.[12] This method, which produces the isotope 249Bk (t½ = 330(4) days), is still the only way of producing weighable amounts of the element.[13] The major source is the 85 MW High Flux Isotope Reactor (HFIR) at the Oak Ridge National Laboratory in Tennessee, USA, which is dedicated to the production of transcurium (Z > 96) elements.[14][Note 5] In a "typical processing campaign" at Oak Ridge, tens of grams of curium are irradiated to produce decigram quantities of californium, milligram quantities of berkelium and einsteinium and picogram quantities of fermium:[17] In total, just over one gram of 249Bk has been produced at Oak Ridge since 1967.[13]
There is no use for any isotope of berkelium outside of basic scientific research.[13] Berkelium-249 has been used as a target nuclide to prepare still heavier elements, such as lawrencium, rutherfordium and bohrium.[13] It is also useful as a source of the isotope 24998Cf, which is used for studies on the chemistry of californium in preference to the more radioactive 25298Cf that is produced in neutron bombardment facilities such as the HFIR.[13][18]
Isotopes
There are 18 isotopes[Note 6] of berkelium listed in NUBASE 2003, with A = 235–254.[19] The only isotope of significant practical importance is berkelium-249, which shows almost pure β− decay with a half-life of 330(4) days. The most stable isotope is berkelium-247, with a half-life (α decay) of 1.38(25) × 103 years.[19]
Notes and references
Notes
- ↑ The melting point quoted here is the weighted mean of the values found by Fahey et al. (1972)[1] and Ward et al. (1982).[2]
- ↑ The Pauling electronegativity was estimated from periodic trends rather than being calculated from bond energy data.
- ↑ The quoted atomic radii are based on the usual convention that r(O2−, Oh) = 140 pm; on the alternative convention of r(F−, Oh) = 119 pm, the value would be 110 pm for octahedral Bk3+.
- ↑ The decay of 243Bk was initially thought to be by electron capture: the product nuclide is the same in both cases, 24396Cm (t½ = 29.1(1) years).
- ↑ The Research Institute of Atomic Reactors (NIIAR) in Dimitrovgrad, Russia, is also a producer of transcurium elements.[15] The SM-2 loop reactor at NIIAR has similar power and flux levels to the High Flux Isotope Reactor at Oak Ridge, and so production capacities for transcurium elements are expected to be similar at the two facilities,[16] although the quantities produced at NIIAR are not published.
- ↑ This figure does not include nuclear isomers (excited states of the nucleus), many of which are very poorly characterized for the transuranium elements.
References
- ↑ 1.0 1.1 Fahey et al., 1972
- ↑ 2.0 2.1 2.2 Ward et al., 1982
- ↑ 3.0 3.1 Peterson et al., 1971
- ↑ Pauling, Linus The Nature of the Chemical Bond, 3rd ed.; Ithaca, NY, 1960. ISBN 0-8014-0333-2.
- ↑ Köhler, S.; Deißenberger, R.; Eberhardt, K.; Erdmann, N.; Herrmann, G.; Huber, G.; Kratz, J. V.; Nunnemann, M., et al. Determination of the first ionization potential of actinide elements by resonance ionization mass spectroscopy. Spectrochim. Acta, Part B 1997, 52 (6), 717–26. DOI: 10.1016/S0584-8547(96)01670-9.
- ↑ Erdmann, N.; Nunnemann, M.; Eberhardt, K.; Herrmann, G.; Huber, G.; Köhler, S.; Kratz, J. V.; Passler, G., et al. Determination of the first ionization potential of nine actinide elements by resonance ionization mass spectroscopy (RIMS). J. Alloys Compd. 1998, 271–273, 837–40. DOI: 10.1016/S0925-8388(98)00229-1.
- ↑ Shannon and Prewitt, 1969
- ↑ Shannon, R. D. Revised effective ionic radii and systematic studies of interatomic distances in halids and chalcogenides. Acta Crystallogr. A 1976, 32 (5), 751–67. DOI: 10.1107/S0567739476001551.
- ↑ Ward and Hill, 1976
- ↑ Thompson, S. G.; Ghiorso, A.; Seaborg, G. T. Element 97. Phys. Rev. 1950, 77 (6), 838–39. DOI: 10.1103/PhysRev.77.838.2.
- ↑ 11.0 11.1 Thompson, S. G.; Ghiorso, A.; Seaborg, G. T. The New Element Berkelium (Atomic Number 97). Phys. Rev. 5, 80, 781–89. DOI: 10.1103/PhysRev.80.781.
- ↑ Cunningham, 1959
- ↑ 13.0 13.1 13.2 13.3 13.4 Hobart, David E.; Peterson, Joseph R. Berkelium. In The Chemistry of the Actinide and Transactinide Elements, 3rd ed.; Morss, Lester R.; Edelstein, Norman M.; Fuger, Jean, Eds.; Springer: Dordrecht, the Netherlands, 2006; Vol. 3, Chapter 10, pp 1444–98. doi:10.1007/1-4020-3598-5_10, <http://radchem.nevada.edu/classes/rdch710/files/berkelium.pdf>.
- ↑ High Flux Isotope Reactor; Oak Ridge National Laboratory, <http://neutrons.ornl.gov/facilities/HFIR/>. (accessed 23 September 2010).
- ↑ Радионуклидные источники и препараты; Research Institute of Atomic Reactors, <http://www.niiar.ru/?q=radioisotope_application>. (accessed 26 September 2010).
- ↑ Haire, Richard G. Einsteinium. In The Chemistry of the Actinide and Transactinide Elements, 3rd ed.; Morss, Lester R.; Edelstein, Norman M.; Fuger, Jean, Eds.; Springer: Dordrecht, the Netherlands, 2006; Vol. 3, Chapter 12, pp 1577–1620. doi:10.1007/1-4020-3598-5_12, <http://radchem.nevada.edu/classes/rdch710/files/einsteinium.pdf>.
- ↑ Porter, C. E.; Riley, F. D., Jr.; Vandergrift, R. D.; Felker, L. K. Fermium Purification Using Teva™ Resin Extraction Chromatography. Sep. Sci. Technol. 1997, 32 (1–4), 83–92. DOI: 10.1080/01496399708003188.
- ↑ Haire, Richard G. Californium. In The Chemistry of the Actinide and Transactinide Elements, 3rd ed.; Morss, Lester R.; Edelstein, Norman M.; Fuger, Jean, Eds.; Springer: Dordrecht, the Netherlands, 2006; Vol. 3, Chapter 11, pp 1499–1576. doi:10.1007/1-4020-3598-5_11, <http://radchem.nevada.edu/classes/rdch710/files/californium.pdf>.
- ↑ 19.0 19.1 Audi, G.; Bersillon, O.; Blachot, J.; Wapstra, A. H. The NUBASE evaluation of nuclear and decay properties. Nucl. Phys. A 2003, 729, 3–128. doi:10.1016/j.nuclphysa.2003.11.001, <http://amdc.in2p3.fr/nubase/Nubase2003.pdf>.
External links
See also the corresponding article on Wikipedia. |
Error creating thumbnail: Unable to save thumbnail to destination |
This page is currently licensed under the Creative Commons Attribution 3.0 Unported license and any later versions of that license. |